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The development of laminar flow in a 180' section of a curved square duct 
(R/d = 6.45) was studied by laser-Doppler anemometry (LDA). The streamwise flow- 
velocity component V, and the secondary flow component V,  were measured as a 
function of Dean number and of the azimuthal angle #. The development of the 
streamwise flow component was found to be connected with a strong momentum 
transfer towards the outer wall between $ = 0" and # = W", with a partial back- 
transfer of the momentum towards the duct centre (# = 45'-108"), and with little 
further change of the momentum between 9 = 108' and 180" near the outer wall. The 
measurements of the V,  component showed at least one vortex pair in the secondary 
flow. A second vortex pair with opposing sense of circulation was found to develop 
near the outer wall only for Dean numbers between 150 and 300, in agreement with 
numerical calculations. This second vortex pair was found in the region between 
9 = 108 and 171'. Between # = 60 and 108' it was not possible to identify the second 
vortex pair in the developing flow. However, developing laminar-flow numerical 
calculations by Humphrey (1982) show that it also arises for K = 485 in a 180' square 
duct with R/d = 3.35 and Re = 890, and it is a function of inlet flow conditions. 
From the measured stream-function maximum of the second vortex pair it may be 
deduced that a curved duct with 180" (20 hydraulic diameters) bend angle is not 
sufficient to reach fully developed flow conditions at d / R  = 1/6.45 and K = 226. 

1. Introduction 
Viscous flow through straight ducts of various cross-sectional forms is well 

understood. The development of the asymptotic flow from a uniform distribution 
of axial velocity at the inlet is accounted for by boundary-layer theory (Schlichting 
1934). 

The flow in a gently curved duct may be considered as a modification of straight 
laminar flow in which the effects of centrifugal forces must be considered (Dean 
19283). An extended review of curved pipe flow was made by Berger, Talbot t Yao 
(1983). They discuss the entry flow and the fully developed laminar flow, and point 
out that both depend on two parameters, namely curvature ratio and Dean number. 
(Henceforth we will use d for the hydraulic diameter 2ab/(a+b), a and b for the inner 
width and height of the duct, y for the curvature ratio y = d / R ,  and K for the Dean 
number Re(d/R)k R is the duct curvature radius, and the Reynolds number is 
calculated with the average mainstream velocity G, Re = & d / v ,  where v is the 
kinematic viscosity.) The Dean number and curvature are necessary parameters for 
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the characterization of a curved duct flow, and only for small curvature ratios may 
the influence of y on the flow be neglected. 

Most numerical computations are restricted to fully developed curved-duct flow. 
To compare the results of such computations with experiments, one would have to 
know whether or not the experimental flow is fully developed. Knowledge of the 
development and structure of primary and secondary flow in ciirved pipes is helpful 
in practical applications, for example in the design of heat exchangers. Furthermore, 
the flow in some curved geometries shows hydrodynamic instabilities. Dean (19284 
found such an instability in curved infinitely high channels, and Benjamin (1978) 
applied the concepts of bifurcation theory to flows in finite geometries. Therefore 
the question arose as to whether the flow phenomena in curved ducts could be 
interpreted as instabilities. 

Recent secondary-flow measurements in curved pipes were made by Olson (1971) 
with pulsed hot-wire equipment and by Agrawal, Talbot 6 Gong (1978) with 
laser-Doppler anemometry. Both studies found that the development of the entry 
flow is associated with the generation of axial vorticity ; this leads to growing vortices, 
while continuity is not conserved in the cross-section. In addition Agrawal et al. found 
more involved flow patterns at  higher Dean numbers (e.g. K = 678 x &) and for 
q5 = 50°-1050 (d/2R = 3, between 2L/d = 6.11-12.83, with L = entrance length). 
They identified them as consisting of two vortex pairs, the weaker one located near 
the inner wall. Humphrey (1978) and Humphrey, Chang & Modavi (1982) found such 
a four-vortex pattern in their numerical analyses of developing flow in a circular pipe 
and in a 180' curved duct of square cross-section respectively, but they found it at 
the outer wall (see Appendix I11 of Humphrey et al. 1982). 

For curved square or rectangular channels, the theoretical treatment is involved, 
since the required eigenfunctions are not available in analytical form. Numerical 
calculations by Cheng, Lin 6 Ou (1976), Ghia & Sokhey (1977) and Joseph, Smith 
6 Adler (1975) on fully developed flow in a curved square duct predict the existence 
of a second weak vortex pair near the outer wall. Its sense of rotation is opposite 
to that of the bigger pair. Cheng et al. (1976) found the second vortex pair at Dean 
numbers higher than K = 150 (different curvatures, see table 1 for comparison). The 
additional vortex pair was also found in the calculations of Ghia 6 Sokhey, who gave 
a lower limit of K = 143 for its onset, and in calculations of Joseph et al. for K > 152 
(related to d). Indeed there was no evidence of a second vortex below K = 150 in this 
experiment, as in all previous experiments. For higher Dean numbers around K = 500 
there are contradictory results concerning the additional vortex pair in numerical 
calculations. Cheng et al. (1976) found indications that there is no extra pair a t  the 
Dean number K = 520 and y = a (developed flow), while Humphrey et al. (1982) 
obtained the extra pair for developing flow in a 180' curved duct of square cross- 
section with K = 485 and y = 1/3.35 in a similar way as at lower Dean numbers. The 
strength of the calculated vortex pairs depends on the entry profile (flat or parabolic) 
according to the results of Humphrey et al. (1982, Appendix 111). The question 
remains a t  what curvature ratios and in what range of higher Dean numbers the 
additional pair may exist and up to what azimuth the entry flow influences the onset 
of that pair. 

Nandakumar 6 Masliyah (1982) discussed the instability aspects of the additional 
secondary vortex pair. They interpreted the appearance of different flow solutions 
in curved pipes as a bifurcation phenomenon in the sense used by Benjamin (1978). 
In curved pipes and in semicircular-cross-section geometries Nandakumar 6 Masliyah 
found a bifurcation of the two-vortex solution into a two- and a four-vortex solution 
at  K = 100. They analysed the attraction of the four-vortex solution in terms of 
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cross-section shape and Dean number. They found that the four-vortex solution is 
much easier to obtain if the outer wall profile is flat. 

A treatment of the developing flow in the entry section of curved pipes or ducts 
would be necessary to predict the run length needed for the develepment of the flow. 
Singh (1974), Smith (1976) and Yao & Berger (1975) treated the entry-flow problem 
by means of three-dimensional boundary-layer theory. Smith's analysis includes an 
upstream response (in the straight section) to downstream pressure variations (in the 
bend). He found that the larger wall shear stress occurs at the inside in the entry 
part of the bend, but from 1.51 radii onwards the larger shear stress occurs at the 
outside; at the point of crossover the centrifugal and inertial forces are equally 
strong. The calculations of Smith are in agreement with the experiments of Agrawal 
et al. (1978) and Olson (1971) for the flat entry-flow profile. In  this case a shear- 
stress crossover was found by Olson at # = 20" (5 radii) in the bend (K = 407 x &, 
Rld = 8.0). 

However, in the experiments with fully developed entry-flow profde (Olson 1971 ; 
Humphrey, Taylor & Whitelaw 1977), as well as in the present work, this crossover 
was not found, because the boundary layer is already large. Instead i t  was found that 
the velocity maximum is always closer to the outside wall, and that the larger shear 
stress occurs at the outside wall. In fact, the velocity maximum moves monotonically 
toward the outside wall up to q5 = 60". For a strongly curved rectangular duct, 
d / R  = 8, Humphrey et a l .  (1977) found a region of streamwise flow reversal near the 
outer wall at the bend inlet which is the result of the initial strong deceleration there. 

Experimental results by the authors mentioned indicate a transfer of streamwise 
momentum associated with a displacement of velocity maximum towards the outer 
wall up to q5 = 60". Between 9 = 45' and about 110' the momentum is partially 
transferred back towards the inner wall. While the transfer of momentum density 
towards the outer wall (between q5 = 0' and 60') is due to the change of the geometry 
from a straight section to a curved section, the momentum density increase between 
midplane and inner wall (between 4 = 45" and 110") is coupled with fluid transport 
by the developing secondary flow ; more fluid is transported by the first vortex pair 
back towards the inner wall than from the region between the inner wall and the duct 
centre to the outer wall. According to Olson (1971), we may call the momentum 
transfer to the inner wall an 'overshoot', Past the transient region, i.e. past about 
110", the flow would seem almost developed, since little change in the mainstream- 
velocity component V+ can be detected experimentally. As we will show by our 
measurements of secondary flow, the flow development is not complete up to 180' 
(that is, about 20 hydraulic diameters away from the inlet) for a curvature ratio 
d / R  = 116.45. This is in agreement with the calculations of Humphrey et al. (1982) 
for d / R  = 113.35. 

Somewhat related to our experiments is a combined theoretical and experimental 
study by Mullin & Greated (1980), who investigated the problem of oscillatory flow 
in curved pipes. Further experiments on pulsating flow in curved pipes were carried 
out by Talbot & Gong (1983), who found separation during the decelerating phase 
of the cycle (for new work on oscillatory flow see also Bertelsen 1983). 

2. Experimental set-up 
The test section of our experimental set-up is shown schematically in figure 1. It 

consists of 180" bend of a square-cross-section channel with a hydraulic diameter 
of 3.8 cm and of straight inlet and outlet sections. An inlet section of 2 m was chosen 
(52 times the hydraulic diameter), which was longer than that required for full 
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I 
I Vortex region 

4 = 180" 

FIGIJRE 1 .  Geometry, dimensions and arrangement of the curved square duct. The straight inlet 
tubes force a fully developed inlet profile and prevent upstream influences from the system outlet. 
The inlet into the straight section is conditioned with a calming chamber and a honeycomb grid. 

FIGURE 2. Coordinates of the curved square-channel section. The radial component is defined as 
x = ( r - R ) / d ,  with d = hydraulic diameter and R = radius of curvature. The velocity in the 
x-direction iu denoted by V,. 

development of the laminar profile (Schlichting 1934) at the highest Reynolds number 
occurring in this experiment. The channels were made of transparent Lucite 
(Plexiglas) to facilitate laser-Doppler anemometry (LDA) measurements. At the 
same time, this material has a low heat conductivity, which helps to suppress 
unwanted thermal-buoyancy effects in the working fluid. 

The system of coordinates used for the description of the curved duct section is 
shown in figure 2. The bend had a curvature ratio d / R =  116.45. Note that the 
dimensionless cross-section coordinates are denoted by x and z. They both vary 
between -4 and t .  

For a non-isothermal working fluid, buoyancy effects may cause a secondary flow 
which may mask the object of our study, i.e. the secondary flow due to centrifugal 
effects. 

The influence of temperature gradients on the flow through straight and curved 
pipes has been studied by several authors for either uniform-heat-flux or uniform- 
wall-temperature boundary conditions (Cheng et al. 1974; Cheng, Hong & Hwang 
1972; Mori & Futagami 1967; Scheel & Schulz-DuBois 1982). Summarizing the 
published numerical results and some experimental results in the straight section of 
a rectangular curved duct (Vehrenkamp 1980; Augustin 1982), a Rayleigh number 
Ra = loo00 causes secondary flow velocities with a magnitude of 1 Yo (2.5 %) of the 
mainstream velocity for Reynolds numbers larger than RP = 400 (200). 

For our curved square duct with a cross-sectional dimension of 3.8 cm, with water 
as working fluid and temperature control within kO.01 K, we obtain a Rayleigh 
number Ra = gBd3 AT(ua)-' = 9800 (d  = hydraulic diameter, B = coefficient of 
thermal expansion, g = gravitational acceleration, a = thermal diffusivity, u = 



Primary and secondaryjow in a curved square duct 223 

FIQURE 3. Experimental setup of the flow system: 1, upper overflow reservoir; 2, lower underflow 
reservoir; 3, overflow stopcock; 4, heat exchanger/Alpha Lava1 type DO; 5 ,  flowmeter 3000 I/h; 
6, thermostat with pump/Lauda tupe RC20; 7, filter; 8, pump 30 W/type Eheim 1026; 9, 
pump-system stopcock; 10, flow regulator; 11, flow-calming chamber; 12, duct system; 13, 
ventilation; 14, bypass; 15, flow regulator (used at low Dean numbers, smaller than 100; 16, 
flowmeter up to 30 I/h (K = 100)/Brooks Shorate; 17, flowmeter up to 300 l/h/Brooks DD1120; 
18, flowmeter 3000 l/h; 19, duct-system stopcock; 20, seeding injection; 21, NTC thermometer 
& "C; 22, thermometer &, "C. 

kinematic viscosity, and T = temperature). The velocity of the buoyancy-driven 
secondary flow then has a magnitude of 100 pm/s; this is about 1 % of the stream- 
wise velocity for a Reynolds number Re = 556. 

The combined hydraulic-flow and temperature-control system is shown in figure 3. 
The water temperature was held constant to within kO.01 "C for several hours, 
while the laboratory air was controlled to within k0.5 "C. Thus i t  was possible to 
reduce the Rayleigh number to below lo4. The control system involved several 
thermistors, electric heating elements and a counterflow cooler using tap water. The 
flow system was covered with polystyrene foam for thermal insulation. Windows were 
inserted where laser-Doppler measurements were intended. The room temperature 
was kept somewhat above that of the rest of the building. In principle, temperature- 
control requirements could be diminished by use of a duct with smaller cross-section. 
But this would lead to a reduced relative spatial resolution of the LDA measurements. 
The selected size of (38 mm)2 corresponds to about 100 x 100 resolvable points. 

For a cross-section of this size the relevant velocities, in particular the radial 
component, are of the order of 0.1-2 mm/s, and hence difficult to measure. To 
overcome this problem we developed suitable laser-Doppler and data-extraction 
methods (Hille, Vehrenkamp & Schulz-DuBois 1983) based on photon-correlation 
techniques and a refined fast-Fourier-transformation algorithm. An LDA system is 
preferred because the measurement is non-intrusive and strictly yields a Cartesian 
velocity component even if the measured component is small compared with the 
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FIGURE 4. Laser-Doppler anemometry system and data-processing system. The diameter of the 
measuring volume was about 50 pm, the fringe distance was 2.48 pm. 1, He-Ne laser; 2, optic with 
half-wave plate; 3, beam splitter; 4, Bragg cells; 5 ,  receiving optic; 0, lens; 7, photomultiplier system 
(D, discriminator; P, photomultiplier) ; 8, correlator; 9, microprocessor (fast Fourier transform) ; 
10, terminal. 

dominant velocity component. Similar measurements with pulsed hot-film techniques 
require a considerable effort (Olson 1971). 

To maintain a constant pressure difference between inlet and outlet and to avoid 
pressure pulsations inherent in all types of pumps, an overflow system was used. Two 
reservoirs were positioned at fixed heights above and below the channel. In  the upper 
one the water level was kept constant by an overflow outlet. 

In the curved channel section the laser-Doppler system shown in figure 4 was used. 
By rotating its optical part by 90' this system can be set up to measure either the 
main, azimuthal velocity component V4 or the secondary, radial component V,. To 
achieve better mechanical stability of the optical system, a backward-scattering 
system was used. With this set-up vertical profiles V,(z) or V,(z )  could be measured 
at radial positions. Thus it was possible to obtain data about the entire field V,(z, z )  
at a given azimuth 9. Note that velocity measurements close to the walls (1-3 mm) 
were not possible owing to the slant of the laser beams and to watel--lucite interface 
reflections. These reflections caused too strong photon noise, which prevented 
measurements. 

The laser-Doppler measuring volume had a diameter of 50 pm (in the (2, #)-plane) 
and a length of 0.4 mm (in the z-direction). The angle between the laser beams was 
14.66', leading to a fringe distance of 2.48 pm. For measurement of the small radial 
velocity component V, a comparatively low Bragg-shift frequency of 12 kHz was 
used. The main velocity V4 was measured without Bragg shift. 

Photon correlation was used for laser-Doppler signal analysis because the 
backscattered light intensity is small. In addition it offers the advantage of obtaining 
velocity data whose accuracy may be enhanced by a longer sampling period. The 
laser-Doppler signal was fed to a Malvern K7023 photon correlator having 96 
channels. The sample time (time delay between two channels) was 10 ps, leading to 
a total time lag of 960 ps. In our studies a sampling period of 45 s proved adequate 
for determination of a velocity value which involved the correlation and subsequent 
fast Fourier, transformation followed by an interpolation algorithm. Owing to the 
symmetry of the photon autocorrelation function, 192 channels were used in the 
Fourier transformation. The interpolation algorithm (Hille et al .  1983) led to a 
resolution in the velocity values that is 50 times better than that due to the Fourier 
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FIGURE 5. With tilted measurement set up, not only the secondary-flow component V,  is 
measured, because a systematic error SV, is added. 

transform alone. In this way the velocity was determined with an absolute error of 
20 pm/s only. 

For the determination of the radial velocity V,  the orientation of the laser cross-beam 
pattern is crucial. If there is a misalignment around the optical axis of 6 (see 
figure 5 )  the measured component is 

(1 a)  V, = V, cosS+ V, sin&, 

which gives V, = V, + V+ 6 for small 6. (1 b)  

Since V / V ,  may be 30, the permissible misalignment for a less than 3% error is 
S < lo-$ = 3.6 minutes of arc. Instead of alignment by purely geometrical means, 
we made use of development and symmetry properties of the flow itself. For a fully 
developed laminar flow the continuity equation applies in the two dimensions of 
cross-section. The secondary flow may hence be described by a stream function, and, 
in particular, the integral 

vanishes when the flow is fully developed. In  the alignment procedure S is varied until 
the integral over the component V, vanishes. This was possible between # = 108' 
and 162" (see figure 8). Note that the integral (2) does not vanish for some x if the 
flow is not fully developed, i.e. if the mean-velocity component still undergoes 
changes in the streamwise direction (aV,/a# =+ 0).  In  this case (2) becomes 

From the streamwise flow profiles (figure 6) we obtained the change for V6 of 
8 x cm/s within A# = lo in the region with the best streamwise flow development 
(that is the region between # = 108' and 162'). Therefore, applying the continuity 
equation, at the radial position x = 0.29 (0.8 cm away from the outer wall) the 
error for I(x) is calculated to be 0.06 cm*/s. This is in agreement with the direct 
measurements of I(z) (figure 8). The resulting velocity error due to an alignment 
procedure in the region between # = 108' and 162' is therefore less than 150 pm/s. 
After alignment, I ( z )  is indicative of the degree to which the flow has developed. 
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FIQURE 6. Mainstream velocity as a function of the radial location z at z = 0 and K = 226. The 
measurements are taken at various points around the bend. 

3. Experimental results 
Measurements of the main azimuthal velocity component V+ were taken in order 

to obtain information on flow development. V+ was measured as a function of the 
radial coordinate x in the midplane of the cross-section, z = 0, at intervals of 18" in 
the azimuthal angle. These data were all recorded at a Reynolds number Re = 574 
with a corresponding Dean number K = 226 (R /d  = 6.45). These results are shown 
in figure 6. The midplane velocity maximum, initially located a t  x = 0 in the straight 
inlet section, gradually moves outward, and reaches x = 0.35 near 9 = 36". It 
remains there up to 9 = 54". For 9 > 5 4 O  the maximum velocity is slightly reduced. 
Obviously the strong flow near the outer wall is due to a tendency for conservation 
of the initial linear flow momentum at the inlet. 

For azimuthal angles between 9 = 45" and 108" the midplane streamwise flow 
velocity increases between the channel centre and the inner wall at x =  -0.3 
(figure 6). We recognize that the increasing velocity near the inner wall is part of the 
overshoot mechanism. It is coupled with a decrease of the mass flux in the outer-wall 
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FIQURE 7. Streamwise velocity development. Shown is V, in the midplane of the curved channel. 
A, entry flow; B, overshoot region; C, fully developed region; D, outlet region. The measurements 
shown in figure 6 are sketched. 

I =  

0.6 

0.4 

0.2 

0 

/V,& 

f 
- - -  x = 0.29, K = 226 
- 0.37, 334 

--.... 0.31, 226 

I 

-.,.. .... ., - 
140° # 

-0.2 1 
FIQURE 8. Influence of the streamwise velocity on the radial velocity as a function of the azimuthal 
angle. Non-zero integral Z may either mark a non-fully developed flow or an error in the adjustment. 
A positive integral is due to mass transfer to the outer wall if the measurement set-up is properly 
adjusted. 

region, and a non-zero mass flux from the outer wall to the inner wall in the radial 
direction. The mass flux in radial direction is indicated in figure 8. Between # = 45" 
and 70" we obtain a negative integral of the radial velocity along a vertical location 
(see also figure 7) .  Further curves in figure 6 show that the streamwise velocity does 
not change noticeably with # in the region between x = -0.5 and 0.2. This suggests 
that in the region 108" < q5 < 162" the inner part of the flow pattern is practically 
fully developed or better ; changes are smaller than measurement uncertainties. This 
fact is corroborated by data on the primary vortex pair. On the other hand, near the 
outer wall, 0.2 < x < 0.5, the curves of figure 6 (4 = 126"-162') show a slight 
rearrangement of the flow maximum towards the inside, a trend that points to the 
influence of the second vortex pair. This suggests that the flow is not fully developed 
if we take the small changes of the second vortex pair into account. In figure 7 the 
streamwise flow development is summarized. 

Further information on the question of the flow development is presented in the 
data of figure 8, where the integral over the radial velocity given by (3) is evaluated 
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numerically from measured data and is plotted versus q5 for the indicated radial 
coordinates x. There are two regions where the integral I(x) does not vanish, thus 
indicating radial mass flux. Up to q5 = 45", where I is positive, i t  is known from the 
mainstream velocity measurements that the maximum moves toward the outside. 
At $ = 45", I vanishes, but this may not be taken as a sign for fully developed flow 
since dl/dq5 + 0. From q5 = 45O up to a value near 80" or go", I is negative, and this 
is known to be related to the overshoot. From there on, the plotted values of I are 
equal to zero, with a margin of error of 0.05 cmz/s. This indicates a velocity error 
of 130 pm/s due to improper adjustment. 

The next results are concerned with the appearance of a second vortex pair. For 

FIGURE 9. Numerical results for secondary-vortex structure (after Cheng et d. 1976). The 
qualitative agreement with figure 10 is obvious. For quantitative comparisons see table 1.  
(a)  Rld = 10, K = 368; ( b )  Rld = 4, K = 520. 
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. / - -  

(4 
FIGURE 10. Two-dimensional profiles of secondary velocities (radial velocity component V,  
measured, vertical velocity component V,  reconstructed, see text). In (a) four vortices may be 
recognized. The additional vortex pair near the outer wall is asymmetric. The additional vortex 
pair disappears at higher Dean numbers K > 300 ( b ) .  (a )  q5 = 136', K = 226, Re = 574; ( b )  q5 = 136", 
K = 334, Re = 853; both have Rld = 6.45. 

a wide range of Reynolds or Dean numbers, the secondary flow pattern looks similar 
to figure 9(b) computed by Cheng et al. (1976) for a developed flow at K = 520, 
d / R  = :: the main feature is a pair of primary vortices created by centrifugal effects 
in the centre of the cross-section. For a limited range of conditions, for example 
K = 368, d / R  = +,, they calculated patterns like figure 9 (a), which features a second 
vortex pair and a free stagnation point. If one considers the transfer of streamwise 
momentum by the secondary flow pattern of figure 9(a), it is apparent that the 
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FIGURE 11.  (a-c). For description see opposite page. 
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FIQURE 11.  Measured secondary-velocity profiles of the radial velocity component V,  in dependence 
of vertical location z :  (a) secondary flow at a low Dean number K = 80; (a), (c) Dean number 
K = 226 - an additional velocity minimum indicates an additional vortex pair; (d), (e) at higher 
Dean numbers there is no additional vortex pair in the region between q5 = 110' and 150'. The 
measured negative velocities V ,  between q5 = 54' and 108' are due to non-fully developed entry 
flow ; between q5 = 150' and 180' an upstream influence from the outlet disturbs the flow. 

additional vortex pair tends to repel the maximum of the streamwise velocity from 
the outer wall. Thus the second vortex pair seems necessary in order to keep the 
velocity maximum closer to the centre of the cross-section, which in turn reduces 
viscous friction. 

For two flow conditions, K = 226 and K = 334, both at  $ = 136O, we have deter- 
mined the entire secondary flow pattern shown in figures 10 (a,  b). The quantity used 
to determine these patterns was v,. measured at numerous points in the (z, 2)-plane. 
Since the flow may be considered as fully developed within the required numerical 
accuracy, the two-dimensional continuity equation holds. We then obtained w, 
through numerical integration, including interpolation to obtain the near-wall points, 
and differentiation : 

In  figure lO(a), besides the two big primary vortices with centres at coordinates 
x = -0.09, z = kO.30, one recognizes at least one small vortex with centre at x = 0.33, 
z = -0.03: a slight aaymmetry in the V, profiles, and consequently in the vortex 
structure, made its counterpart too small for easy identification. In figure lO(b) ,  by 
contrast, there are two main vortices, without a trace of a second vortex pair. 

As a check on the presence of the additional vortex pair, we measured vertical 
profiles of V,, V , ( z )  at x = 0.37 close to the outer wall - see the dashed line in figures 
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FIGURE 12. Dean-number dependence of the first vortex pair. $$,Lx is the value of the dimensionless 
stream function in the vortex eye. +, q5 = 90"; 0,  $ = 144O, numerical results: A, Ghia & Sokhey 
(1977), 0, Cheng et al. (1976); V, Joseph et al. (1975). 

10(a, b). If there is no additional vortex pair the radial velocity is positive, i.e. 
towards the outside, at vertical location z = 0. If  there is a second vortex pair, the 
velocity V,  is negative near z = 0. Keeping this in mind, the data of figure 11 (a) show 
that there is no second vortex pair at Re = 203, K = 80. As figures 11 (b, c) show, 
however, a t  Re = 574, K = 226 there is a second vortex pair starting at about qj = 60" ; 
the inward flow between these extra vortices has a negative velocity V,. The 
additional vortex pair is present for qj > 60". At still higher flow rates Re = 853, 
K = 334, as seen in figures 11 (d, e ) ,  there is a weak indication of the additional vortex 
pair between $ = 54" and 90°, and from 90" to 144" there is uncertain indication of 
these vortices. The negative velocity V, indicates the existence of the additional 
vortex pair certainly, if the flow is fully developed and if I(z) = 0 (qj = 108"-144"). 
If I is not zero, it is not possible to separate developing flow and secondary vortices. 
Therefore we conclude from figures 10(a,b) that there is no additional vortex pair 
at K = 334 and that there is an additional vortex pair at K = 226. 

We have used the value of the dimensionless stream function in the eye of the 
respective vortex to obtain a quantitative comparison of calculated flows with the 
experimental data. By definition, the stream function has an extremum there. This 
may be computed from measured data by numerical integration : 

where (xo, zo)  is the location of the vortex eye. Figure 12 shows the maximum of the 
stream function of the primary vortex as determined from our measurements at 10 
different Dean numbers and two azimuthal angles in the developed range. $-,,, is 
the same for both angles, and it is a monotonically increasing function of the Dean 
number, roughly proportional to Ki. Also shown in figure 12 is a calculated value by 
Cheng et al. (1976), which is about 25 % greater than our experimental data, and 
two calculated values by Ghia & Sokhey (1977), which differ by 10 yo from the 
experimental data. A similar plot of the stream-function maximum for the second 
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FIGURE 13. Dean-number dependence of the additional vortex pair. +gLx is the dimensionless 
stream function in the vortex eye. The vortex pair appears a t  K = 150 and disappears at  K = 300. 
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FIGURE 14. Development of the additional vortex pair in dependence of the azimuthal angle. The 
vortex strength increases after q5 = 110"; in this region the streamwise flow is practically fully 
developed. Obviously an angular dependence of interaction between additional vortex pair and 
streamwise flow leads to an increasing second vortex-pair strength for q5 > 110' (see figure 6 for 
comparison). 

vortex pair is shown in figure 13. These values, evaluated from the measurements, 
are an order of magnitude smaller than those of the primary vortex pair. The 
stream-function values for $ = 144O are greater than those at $ = 126' (by a factor 
of around 1.6). The most interesting feature is the fact that there is no additional 
vortex pair for Dean numbers either smaller than 150 or larger than 300. In  the range 
150 < K < 300 the 'strength' of the second vortex pair passes through a maximum. 

Figure 14 shows the maximum of the experimentally determined stream function 
of the additional vortex pair as a function of the azimuthal angle at fixed Re = 574, 
K = 226. Here the quantity $gLx is constant only in the range 68" < K < 125O, while 
for larger angles it increases greatly. This suggests that the fully developed value of 
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FIGURE 16. The dependence of the maximum secondary-flow velocity V,  in the boundary layer near 
the upper wall as a function of the Dean number. It was measured in a rectangular channel with 
aspect ratio h / w  = 5. The location of the measuring volume is sketched in the figure. The secondary 
flow from the outer t o  the inner wall forms a strong boundary layer, yet the boundary-layer 
thickness is of the channel height b. 

FIGURE 9. Numerical results for secondary-vortex structure (after Cheng et d. 1976). The 
qualitative agreement with figure 10 is obvious. For quantitative comparisons see table 1.  
(a)  Rld = 10, K = 368; ( b )  Rld = 4, K = 520. 
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$gLx is much greater and presumably would require much more than a 180' curve 
for the fully developed state to be achieved. 

Studies of temperature influence on the curved duct flow, studies of inlet flow 
development, and the first secondary-flow measurements were made in a rectangular 
curved duct (d = 3.33 cm, R/d = 5.7, height/width = 10 cm/2 cm). Figure 15 shows 
a vertical profile of the streamwise velocity, which was measured in the straight inlet 
section of the rectangular duct. The comparison with the computed theoretical profile 
shows a slight asymmetry, which appears at a Rayleigh number around 20000. 

In the curved section the centrifugal force is reduced only near the upper and lower 
wall of the curved section. Therefore the secondary-vortex backflow near the upper 
and lower wall forms a localized jet. The maximum velocity as a function of the Dean 
number is shown in figure 16; this result also refers to the rectangular duct. 

4. Onset of the secondary-vortex pair in relation to instability theory 
A critical Dean number is often quoted for the appearance of the second vortex 

pair. This may be taken to suggest that this phenomenon is an instability. We would 
like to point out that this association is questionable in ducts of square cross-section, 
since there is no breaking of an invariance or symmetry. For comparison, in infinitely 
high curved channels there is translational invariance in the z-direction, which will 
indeed be broken at the critical Dean number (Dean 1928~) .  

According to bifurcation theory (Benjamin 1978) an instability in a system with 
finite height is recognized by branching of flow solutions at a given parameter 
(Reynolds-number) value. The difference of the numbers of stable and unstable flow 
solutions must be equal before and after the critical parameter value, i.e. the critical 
Dean number. The experimentalist has to observe that the number of stable flow 
solutions changes at the critical Dean number. If the flow is unique up to the critical 
Dean number, then we can recognize more than one stable flow solution beyond the 
critical Dean number. For example, the two-vortex solution changes into a two- and 
a four-vortex state at K = K,. The analogy with competing two- and four-vortex 
states in the Taylor-flow problem suggests that the transition between such states 
in curved ducts with finite aspect ratio may be a transcritical bifurcation, i.e. 
associated with hysteresis. The theoretical results of Nandakumar & Masliyah (1982) 
for curved pipes may be discussed in this context. They found a bifurcation and a 
branching of a two-vortex flow solution into a two- and four-vortex flow solution. 
The appearance and the location of the additional vortex pair found in their 
calculations are in agreement with the location and the onset Dean number of our 
second vortex pair. However, the required second flow solution, a two-vortex state, 
was not found in our experiments. Instead we found a smooth transition from two 
to foyr vortices. It may be that the additional two-vortex state can only be reached 
by a large perturbation which involves not just the developed flow but the flow- 
development region as well. No evidence for a second flow pattern was found in our 
experiments (square duct) so that the question of whether the flow structure is subject 
to a bifurcation remains unanswered. 

The following consideration shows that the appearance of an additional vortex pair 
may result from a stream function that is asymmetric around the line x = 0. This 
asymmetry also occurs in the streamwise velocity profiles, and is, as we will point 
out, not only a result of geometry. This asymmetry around x = 0 is generated by the 
nonlinear interaction terms, (1 1)-( 14). The stream functions'of the first and additional 
vortex pairs have different symmetries around x = 0. Also, the pressure-generated 



236 P. Hille, R. Vehrenkamp and E .  0.  Schulz-DuBois 

streamwise velocity and the streamwise velocity induced by the first vortex pair have 
different symmetries around x = 0. While the streamwise flow is even around z = 0, 
the stream function is odd around z = 0. 

The equations for the mainstream velocity and secondary-flow stream function of 
fully developed flow large curvature ratios R / d  may be written as follows: 

av a a a a l a $  
A+ - $ - Vfi-- $ - V +- - V+ = v 
at aZ ax ax aZ fi R a Z  

a a a  a a  i a  
at aZ ax ax aZ R aZ -A$+-$-A$--$-A$= vAA$+--VZ,, 

where 

with the boundary conditions 

V,(x, z )  = O ;  $(x, z) = 0 ;  V$(x ,  z )  = 0 at 5, z = +$id, (7) 

where 

Here $ is the stream function of the secondary flow, v is the kinematic viscosity, P 
is the pressure and p is the fluid density. In (6) we neglect some geometrical terms 
and simplify 1/(x+ R) x 1/R. The stream function for the fully developed flow may 
be expanded in terms of eigenfunctions, 

(8) $(x, 2) = X Cm, 2n+1$,, 2 n + l ( ~ ,  z ) ,  m, m = O,1, ... , 
n,  m 

which satisfy the eigenvalue equation 

A W m ,  2ni-1= Ah, 2n+i @m, 2n+1 (9) 

and the boundary conditions (7). Here m denotes the number of nodes of the eigen- 
functions $m, 2n+1 in the r-direction and 2n+ 1 the number of nodes in z-direction, 
the latter being odd for symmetry reasons. The coefficients Cm, 2n+l satisfy an infinite 
number of nonlinear coupled ordinary differential equations which result from (6). 

The eigenfunction representing the stream function of the primary vortex pair is 
$o, We want to denote the function $o, and its harmonics as $s, a, indicating a sym- 
metry about x = 0 and antisymmetry about z = 0. The eigenfunction representing 
four vortices in four corners is $1, 1. We want to denote kl1 and its harmonics as $a, a. 

A linear superposition of the introduced functions ka, a and $s, a leads to a secondary 
flow field with first and additional vortex pairs which depends on the ratio Cl, JC0, 
and on the sign of these expansion coefficients. We may also evaluate the streamwise 
flow component Vfi in terms of eigenfunctions c,j according to 

with 

m,* = -% V t *  
V, = 0 at x, z = +$id. 

In this case V$,o and harmonics represents a straight channel flow V&. The 
streamwise flow, which is asymmetric about x = 0 ,  V:,s,  is obviously the result of 
the interaction between primary and secondary flows : 
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and there is a smaller-magnitude term due to geometric properties : 

The secondary flow is generated by the centrifugal force, 

and by self-interaction of the secondary flow, 

The generation of the second vortex pair depends on the magnitude of $, a in relation 
to ~ s , a .  From (13) and (14) it  is obvious that $a,a is generated by V i , s  and V$,s.  
Because V t , s  is always induced by a first vortex pair $s,a, ( l l ) ,  we may conclude 
that $a, a is always generated. 

Now, for a given Co, ,, which represents $s, a or the first vortex pair, and small C,, ,, 
which represents $a, a, the resulting stream function is that of a two-vortex system, 
but with the symmetry about x = 0 removed. A four-vortex state can be recognized 
only if the ratio C,, l/Co,l reaches a certain magnitude. The most likely ('generic') 
expectation is that both Co, and C,, increase monotonically, although at a different 
rate, as functions of the Reynolds number. Then there is no good reason to call the 
first measurable appearance of the additional vortex pair a bifurcation, since in that 
vicinity the significant parameters change smoothly and monotonically. 

5. Comparison with computer results and conclusions 
Table 1 shows results of computer calculations by Ghia & Sokhey (1977), Joseph 

et al. (1975) and Cheng et al. (1976), together with some of our measured results. The 
data do not allow a quantitative comparison in every respect, since vastly different 
curvature ratios were used. Nevertheless, some qualitative agreement is found. All 
authors state that the second vortex pair exists only in the range K ,  < K, where K ,  
is uncertain by a factor of 2 at the most. The values $gLx of the stream-function 
maximum of the dominant vortex pair in the computed results by Ghia & Sokhey 
(1977) and Joseph et al. (1975) are similar to the experimental ones, whereas the 
computations of Cheng et al. (1976) yield for $$Lx values greater by a factor of 2. 
Cheng et al. also computed a high value 16.7 for $gLx. 

All our measured $gLX values are lower than computer results by a factor of 2 4 .  
From figure 14 it  is obvious that the strength of the second vortex pair increases with 
azimuthal angle. Therefore we conclude that the vortex strength of the second vortex 
pair would continue to increase in a helically coiled tube for azimuthal angles 
4 > 180". If we extrapolate figure 14 to beyond 180", $gLx would be increased by 
about 1 for A$ = 36". A vortex strength of 7 ,  which is predicted by Joseph et al. (1975), 
would be reached after 9 = 300", and a vortex strength of 5 (Ghia & Sokhey 1977) 
would be reached after 4 = 230". This indicates that a 180" bend does not allow for 
fully developed flow at our curvature ratio d / R  = 1/6.45. For larger angles the 
strength of the second vortex pair would presumably increase until it  reaches the 
value predicted for developed flow. 
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Only Humphrey et al. (1982) calculated numerically the streamwise flow develop- 
ment and the angular development of secondary vortices in a curved duct. They 
found the additional vortex pair at a Dean number of 485. This disagrees with our 
flow measurements at K = 344. The reason seems to be the different curvature 
ratio - Humphrey et al. used d / R  = 1/3.35, while we used d / R  = 1/6.45. 

In  summary, our experiments permit the distinction of several phases in flow 
development. 

1. Initially the maximum of the main flow component moves outward between 
# = 0 and # = 60' owing to a tendency for linear-momentum conservation. 

2. Between 45O and 108' the unbalanced mass flux of the first vortex pair causes 
transport of some streamwise momentum back into the region between the duct 
centre and the inner wall. 

3. Beyond 108' the vortex strength of the first vortex pair is constant and the 
streamwise velocity between the inner wall and the duct centre remains the same. 

4. Between 60' and the outlet an additional vortex pair is generated and grows. 
For angles # < 108" it was not possible to separate the secondary velocities of the 
additional vortex pair from the secondary velocities induced by the overshoot. 

5. The fully developed state is expected to be reached for # > 180' - an estimate 
is 220'. Then the interaction between second vortex pair and streamwise velocity 
should be constant. 

6. The second vortex pair is observed only in the range of Dean numbers 
150 < K < 300 ( d / R  = 1/6.45). 

Available evidence suggests that the flow pattern in curved square ducts at these 
low Reynolds numbers is unique. Considering recent results on hysteresis effects in 
Taylol-Couette flow (Mullin, Pfister & Lorenzen 1982) and taking the results of 
Nandakumar & Masliyah (1982) into account, one may surmise that a similar 
hysteretic bifurcation becomes observable in a curved rectangular channel with 
height h larger than width w. For example, in a channel with appropriate aspect ratio 
h/w, one may expect alternatively two or four vortices. In  early experiments with 
h/w = 5 we observed two alternative flow patterns, but were not able to reproduce 
them. 

This work was made possible by financial support from the Deutsche Forschungs- 
gemeinschaft under contract Schu 419. We thank Dip1.-Phys. H. Agustin for his help 
in setting up controlled thermal and flow conditions. We are grateful to Dr T. Mullin, 
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